16 research outputs found

    Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF).

    Get PDF
    PURPOSE: There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18F-FDG-PET/ CT to predict mortality in IPF. METHODS: A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18F-FDG-PET/CT. The overall maximum pulmonary uptake of 18F-FDG (SUVmax), the minimum pulmonary uptake or background lung activity (SUVmin), and target-to-background (SUVmax/ SUVmin) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18F-FDG-PET measurements and GAP score for risk stratification in IPF patients. RESULTS: During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p  4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. CONCLUSIONS: A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients

    Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    Get PDF
    Purpose: Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Methods: Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). Results: The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). Conclusion: IPF patients have increased pulmonary uptake of 18F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. © 2013 The Author(s)

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    No full text
    Purpose Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary F-18-FDG PET/CT in patients with IPF. Methods The study group comprised 13 patients (11 men, 2 women; mean age 71.1 +/- 9.9 years) with IPF recruited for two thoracic F-18-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary F-18-FDG uptake were used. The maximal F-18-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An F-18-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. Results The mean time between the two scans was 6.3 +/- 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. Conclusion This study demonstrated that there is excellent short-term reproducibility in pulmonary F-18-FDG uptake in patients with IPF

    Integrated 18F-FDG PET/CT and perfusion CT of primary colorectal cancer : effect of inter- and intraobserver agreement on metabolic-vascular parameters

    No full text
    The purpose of this article is to assess the effect of observers on combined metabolic-vascular parameters in colorectal cancer. Twenty-five prospective patients (12 men and 13 women; mean age, 66.9 years) with proven primary colorectal adenocarcinoma underwent integrated 18F-FDG PET/perfusion CT to assess tumor metabolism (mean and maximum standardized uptake value [SUVmean and SUVmax, respectively]) and vascularization (blood flow [BF], blood volume [BV], permeability surface-area product, and standardized perfusion value). Intra- and interobserver agreement for PET, perfusion CT, and combined metabolic-flow parameters were determined by Bland-Altman statistics and intraclass correlation coefficients (ICCs).Peer reviewe
    corecore